Светимость звезд, звездная величина. Звёздная величина От чего зависит звездная величина

Зависит от двух причин: их действительной яркости или количества света, которое они испускают, и от расстояния до нас. Если бы все звезды были одинаковой яркости, мы могли бы определять их относительное расстояние, попросту измеряя относительное количество света, получаемое от них. Количество света меняется обратно пропорционально квадрату расстояния. Это видно на прилагаемом рисунке, где S изображает положение звезды, как светящейся точки, а А и ВВВВ изображают экраны, помещенные так, что каждый из них получает одно и то же количество света от звезды.

Если больший экран в два раза дальше, чем экран А, его стороны должны быть в два раза длиннее, чтобы он мог получить все то количество света, которое падает на А. Тогда его поверхность будет в 4 раза больше, чем поверхность А. Отсюда понятно, что каждая четвертая часть поверхности получит четвертую часть света, падающего на А. Таким образом глаз или телескоп, находящийся в В, получит от звезды одну четвертую часть света, сравнительно с глазом или телескопом в А, и звезда будет казаться в четыре раза слабее.

На самом деле звезды далеко не равны по их действительной яркости, а поэтому и видимая величина звезды не дает точного указания на ее расстояние. Среди более близких к нам звезд многие весьма слабы, многие даже невидимы невооруженным глазом, между тем как среди более ярких встречаются звезды, расстояния которых до вас громадны. Замечательный пример в этом отношении представляет Канолус, 2-я звезда по яркости на всем небе.

По этим причинам астрономы вынуждены ограничиться на первый случай определением количества света, которое посылают к нам различные звезды, или их видимого блеска, не принимая во внимание их расстояния или действительную яркость. Древние астрономы разделили все звезды, которые можно видеть, на 6 классов: номер класса, выражающий собою видимую яркость, называется величиной звезды. Самые яркие, в числе около 14, называются звездами первой величины. Следующие по яркости, примерно 50, называются звездами второй величины. В 3 раза больше звезд третьей величины. Примерно в такой же прогрессии увеличивается число звезд каждой величины до шестой, которая заключает в себе звезды на границе видимости.

Звезды встречаются всех возможных степеней яркости, а потому нельзя провести четкой границы между соседними величинами звезд. Два наблюдателя могут сделать две различные оценки; один причислит звезду ко второй величине, а другой к первой; некоторые звезды одним наблюдателем будут отнесены к 3-ей величине, те самые, которые для другого наблюдателя покажутся звездами второй величины. Невозможно, таким образом, с абсолютной точностью распределить звезды между отдельными величинами.

Что такое звездная величина

Понятие о величинах звезд может быть легко получено каждым случайным созерцателем небес. В любой ясный вечер видны несколько звезд 1-ой величины. Примерами звезд 2-ой величины могут служить 6 наиболее ярких звезд Ковша (Большая Медведица), Полярная Звезда, яркие звезды Кассиопеи. Все эти звезды можно видеть под нашими широтами каждую ночь в течение целого года. Звезд 3-ей величины так много, что трудно выбрать для них примеры. Наиболее яркие звезды в Плеядах именно этой величины. Впрочем, их окружают 5 других звезд, что влияет на оценку их яркости. На расстоянии 15 градусов от Полярной Звезды находится Бета Малой Медведицы: она всегда видна и отличается от Полярной Звезды красноватым оттенком; она находится между двумя другими звездами, из которых одна — 3-ей величины, а другая — 4-ой.

Пять ясно-видимых более слабых звезд Плеяд тоже все около 4-ой величины, пятой величины звезды еще свободно видимы невооруженным глазом; 6-я величина заключает в себе звезды, едва заметные для хорошего зрения.

Современные астрономы, принимая в общих чертах систему, которая дошла до них от древности, постарались придать ей большую определенность. Тщательные исследования показали, что действительное количество света, соответствующее различным величинам, меняется от одной величины до другой почти в геометрической прогрессии; это заключение согласуется с хорошо известным психологическим законом, что ощущение меняется в арифметической прогрессии, если причина, производящая его, меняется в прогрессия геометрической.

Найдено, что средняя звезда 5-ой величины дает от 2 до 3 раз больше света, чем средняя звезда 6-ой величины, звезда 4-ой величины дает от 2 до 3 раз больше света, чем звезда 5-й, и т. д., до 2-ой величины. Для первой величины различие так велико, что едва ли можно указать какое-либо среднее отношение. Сириус, например, в 6 раз ярче, чем Альтаир, который обыкновенно считается типичной звездой первой величины. Чтобы придать точность своим оценкам, современные астрономы постарались свести разницы между различными величинами к одной и той же мерке, а именно приняли, что отношение яркости звезд двух последовательных классов равно двум с половиной.

Если бы прием деления видимых звезд только на 6 отдельных величин был принят без всяких изменений, то мы бы встретили затруднение в том, что в один и тот же класс пришлось бы отнести звезды, весьма различные по яркости. В одном и том же классе оказались бы звезды, превосходящие одна другую в два раза по яркости. Поэтому, чтобы придать результатам точность, пришлось рассматривать класс, величину звезд, как такое количество, которое меняется непрерывно — ввести десятые и даже сотые доли величины. Так, мы имеем звезды 5,0, 5,1, 5,2 величины и т. д., или даже мы можем делить еще мельче и говорить о звездах, имеющих величины 5,11, 5,12 и т. д.

Измерение звездной величины

К сожалению, пока еще неизвестно никакого другого способа определять количество света, полученного от звезды, как судя по действию его на глаз. Две звезды считаются равными, когда они для глаза кажутся равной яркости. В этих условиях наше суждение весьма ненадежно. Потому наблюдатели старались придать больше точности, пуская в ход фотометры — инструменты для измерения количества света. Но даже при этих инструментах наблюдатель должен основываться на оценке глазом равенства блеска. Свет одной звезды увеличивается или уменьшается в определенной пропорции до тех пор. пока для нашего глаза он не покажется равным свету другой звезды; а эта последняя может быть и искусственной звездочкой, полученной при помощи пламени свечи или лампы. Степень увеличения или уменьшения определит разницу величин обоих звезд.

Когда мы стараемся прочно обосновать измерения блеска звезды, мы приходим к выводу, что эта задача довольно сложна. Прежде всего не все лучи, приходящие от звезды, воспринимаются нами, как свет. Но все лучи, видимые и невидимые, поглощаются черной поверхностью и выражают свое действие в нагревании ее. Поэтому самый лучший способ измерять излучение звезды состоит в оценке тепла, которое она посылает, так как это точнее отражает процессы, происходящее на светиле, чем это может сделать видимый свет. К несчастью, тепловое действие лучей звезды настолько мало, что не может быть измерено даже современными приборами. Пока что мы должны оставить надежду определить полное лучеиспускание звезды и ограничиться только той его частью, которая называется светом.

Следовательно, если мы стремимся к точности, то мы должны сказать, что свет, как мы его понимаем, может, в сущности, измеряться лишь по своему действию на зрительный нерв, и нет другого пути измерить его эффект, кроме оценки глазом. Все фотометры, которые служат для измерения света звезд, построены так, что дают возможность увеличивать или уменьшать свет одной звезды и визуально приравнивать ее к свету другой звезды или другого источника и только так оценивать ее.

Звездная величина и спектр

Трудность получения точных результатов увеличивается еще тем, что звезды различаются по их цвету. С гораздо большой точностью мы можем убеждаться в равенстве двух источников света, когда они имеют один и тот же цветовой оттенок, чем когда цвета их различны. Еще один источник неопределенности происходит от того, что называется явлением Пуркинье (Purkinje), по имени , который первый описал его. Он нашел, что если мы имеем два источника светя одной и той же яркости, но один красный, а другой зеленый, то при увеличении или уменьшении в одной и той же пропорции эти источники перестанут казаться одинаковыми по яркости. Другими словами, математическая аксиома о том, что половины или четверти равных величин тоже равны между собой, неприменима к действию света на глаз. Когда яркость уменьшается, зеленое пятно начинает казаться ярче, чем красное. Если мы увеличиваем яркость обоих источников, то красный начинает казаться ярче зеленого. Иначе говоря, красные лучи для нашего зрения быстрее усиливаются и ослабляются, чем лучи зеленые, при одном и том же изменении действительной яркости.

Также выяснено, что этот закон изменения кажущейся яркости не распространяется последовательно на все цвета спектра. Верно, что когда мы переходим от красного к фиолетовому концу спектра, желтый цвет гаснет менее быстро, чем красный, при данном уменьшении яркости, а зеленый — еще менее быстро, чем желтый. Но если мы переходим от зеленого к синему, то уже можно сказать, что последний не пропадает так быстро, как зеленый. Очевидно, из всего этого следует, что две звезды различного цвета, кажущиеся одинаково яркими для невооруженного глаза, уже не будут казаться равными в телескоп. Красные или желтые звезды кажутся сравнительно ярче в телескопе, зеленые и синеватые — сравнительно ярче для невооруженного глаза.

Таким образом можно сделать вывод, что, несмотря на значительное совершенствование средств измерения, развитие микроэлектроники и компьютеров, визуальные наблюдения все еще играют самую важную роль в астрономии, и вряд ли эта роль снизится в обозримом будущем.

33) Первый закон Кеплера . Все планеты Солнечной системы вращаются вокруг Солнца по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

Второй закон Кеплера Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади: скорость движения планет максимальна в перигелии и минимальна в афелии.

Третий закон Кеплера . Квадраты периодов обращений планет вокруг Солнца соотносятся между собой, как кубы их средних расстояний от Солнца. Т1^2/T2^2=a1^3/a2^3

34) СУТОЧНЫЙ ПАРАЛЛАКС - угол с вершиной в центре небесного светила и со сторонами, направленными к центру Земли и к точке наблюдения на земной поверхности; имеет заметную величину лишь для тел Солнечной системы. Суточный параллакс зависит от зенитного расстояния светила и меняется с суточным периодом.

АСТРОНОМИЧЕСКАЯ ЕДИНИЦА длины (а.е.) - мера расстояний до космич. объектов, равная большой полуоси эллиптической орбиты Земли и, согласно св-вам эллипса, ср. расстоянию Земли от Солнца.

35) Парсе́к (сокращённо пк , pc ) - распространённая в астрономии внесистемная единица измерения расстояния . Название происходит от пар аллакс угловой сек унды и обозначает расстояние до объекта, годичный тригонометрический параллакс которого равен одной угловой секунде. 1 пк=206 265 а. е.=3,0857 1016 м. Звезда, расположенная на расстоянии 1 пк, имеет годичный параллакс, равный 1.

Световой год (св. г. , ly ) - внесистемная единица длины . световой год равен расстоянию, которое свет проходит в вакууме , не испытывая влияния гравитационных полей , за один юлианский год . =0,306601 парсек; 63241,1 а.е.;9460730472580,82 км.

Годичным параллаксом звезды р называют угол, под которым со звезды можно было бы видеть большую полуось земной орбиты (равную 1 а. е.), перпендикулярную направлению на звезду.

Расстояние до звезды. D = a/sin(р)

где а - большая полуось земной орбиты. Заменив синус малого угла величиной самого угла, выраженной в радианной мере, и приняв а = 1 а. е., получим следующую формулу для вычисления расстояния до звезды в астрономических единицах:

36) Блеск звезд :-Глядя на звездное небо, можно заметить, что звезды различны по своей яркости, или, как говорят астрономы, по своему видимому блеску. Наиболее яркие звезды условились называть звездами 1-й звездной величины; те из звезд, которые по своему блеску в 2,5 раза (точнее, в 2,512 раза) слабее звезд 1-й величины, получили наименование звезд 2-й звездной величины. К звездам 3-й звездной величины отнесли те из них. которые слабее звезд 2-й величины в 2,5 раза, и т. д. Самые слабые из звезд, доступных невооруженному глазу, были причислены к звездам 6-й звездной величины. Нужно помнить, что название «звездная величина» указывает не на размеры звезд, а только на их видимый блеск.

Шкала звездных величин

Логарифмическая шкала, используемая для сравнения освещенностей (потоков излучения) от различных объектов или определенных их частей. За основание логарифма принято число 2.512..., десятичны логарифм которого в точности равен 0.4. Единицей ступени служит "1 звездная величина"; обозначается 1 m . Возрастание на 1 m соответствует уменьшению освещенности в 10 0.4 =2.512... раз (подробнее см. звездная величина ). Начало отсчета (нуль-пункт шкалы звездных величин ) устанавливается по специально выбранным звездам, называемым стандартами .

Формула Погсона связывает блеск светил с их звездными величинами: , гдеE 1 и E 2 - освещенность от каждого из светил, m 1 и m 2 - их видимые звездные величины.

37) Абсолютная звездная величина - звездная величина, которую имело бы данное светило с расстояния 10 пк. Определяется светимостью объекта. Болометрическая абсолютная звездная величина Солнца .

Модуль расстояния, разность между видимой (m ) и абсолютной (М ) звёздными величинами небесного светила, применяемая в астрономии для описания расстояний до звёзд и звёздных систем.

Связь абсолютной звездной величины M, видимой звездной величины m и расстояния до звезды R в парсеках:

M = m + 5 – 5 lg R.

38) Телеско́п (от др.-греч. τῆλε - далеко + σκοπέω - смотрю) - прибор, предназначенный для наблюдения небесных светил.

В частности, под телескопом понимается оптическая телескопическая система , применяемая не обязательно для астрономических целей.

Существуют телескопы для всех диапазонов электромагнитного спектра: оптические телескопы, радиотелескопы , рентгеновские телескопы , гамма-телескопы . Кроме того, детекторы нейтрино часто называют нейтринными телескопами. Также, телескопами могут называть детекторы гравитационных волн .

Оптические телескопические системы используют в астрономии (для наблюдения за небесными светилами ), в оптике для различных вспомогательных целей: например, для изменения расходимости лазерного излучения . Также, телескоп может использоваться в качестве зрительной трубы , для решения задач наблюдения за удалёнными объектами . Самые первые чертежи простейшего линзового телескопа были обнаружены в записях Леонардо Да Винчи. Построил телескоп в 1608 Ханс Липперсхей . Также создание телескопа приписывается его современнику Захарию Янсену .

39) Рефрактор - оптический телескоп , в котором для собирания света используется система линз , называемая объективом . Работа таких телескопов обусловлена явлением рефракции (преломления). Телескоп-рефрактор содержит два основных узла: линзовый объектив и окуляр . Объектив создаёт действительное уменьшенное обратное изображение бесконечно удалённого предмета в фокальной плоскости . Это изображение рассматривается в окуляр как в лупу. В силу того, что каждая отдельно взятая линза обладает различными аберрациями (хроматической, сферической и проч.), обычно используются сложные ахроматические и апохроматические объективы. Такие объективы представляют собой выпуклые и вогнутые линзы, составленные и склеенные с тем, чтобы минимизировать аберрации.

Кассегрен

Система Ньютона была изобретена Исааком Ньютоном в 1662 году. Это был первый зеркальный телескоп. В настоящее время эта система в профессиональной практике почти не применяется, но получила большое распространение среди астрономов-любителей. Основной недостаток (в случае крупного инструмента) - большая длина трубы телескопа и неудобное расположение наблюдателя на верхнем конце трубы. Достоинство, благодаря которому система получила распространение среди любителей - простота изготовления зеркал (главное зеркало в случае малых относительных отверстий - сфера; плоское зеркало может быть небольших размеров).

Система Кассегрена (1672 год) свободна от указанных недостатков. При том же фокусном расстоянии, что у телескопа системы Ньютона, труба телескопа будет в 2 раза короче. Это значительно сокращает стоимость, как самого телескопа, так и башни, в которой он установлен. Телескопы системы Кассегрена также распространены среди любителей астрономии.

42) Спектр (лат. spectrum от лат. specter - виде́ние, призрак) - распределение значений физической величины (обычно энергии , частоты или массы ). В 1666 году Исаак Ньютон, обратив внимание на радужную окраску изображений звезд в телескопе, поставил опыт, в результате которого открыл дисперсию света и создал новый прибор – спектроскоп.

Оптическая астрономия занимается электромагнитным излучением с длинами волн от 0.3 до 10 мкм, которые соответствуют оптическому окну прозрачности земной атмосферы. Для выражения длин волн в оптике часто применяется внесистемная единица ангстрем (1 А = 10-10 м). Исторически оптический диапазон - первый (а до XX века - единственный) диапазон, в котором проводились астрономические наблюдения, и человеческий глаз был единственным приемником излучения до середины XIX века (времени появление фотографии и ее применения в астрономии).

Невооруженному телескопом глазу звездное небо представляется россыпью светящихся точек , имеющих разную яркость . Видимую яркость звезды , а точнее , ту освещенность , которую создает излучение звезды на поверхности приемника (например , на сетчатке глаза , на чувствительном слое фотопластинки и т . п . ) , астрономы оценивают некоторым численным параметром , называемым видимая звездная величина m . В основу шкалы видимых звездных величин положен экспериментальный закон Вебера-Фехнера: если E - освещенность какой-либо площадки, dE - изменение освещенности этой площадки, а dP - изменение светового ощущения, то справедливо соотношение:

dP ~ dE /E (1)

т.е. изменение зрительного ощущения зависит не просто от изменения освещенности, но от отношения изменения освещенности к освещенности. Закон Вебера-Фехнера можно сформулировать следующим образом:

Если раздражение увеличивается в геометрической прогрессии, то ощущение изменяется в арифметической прогрессии.

Из (1) следует:

P ~ lgE. (2)

Соотношение (2) лежит в основе связи с фотометрической физической шкалой оценок освещенностей, яркостей и интенсивностей.

Яркости (“блеск”) астрономических объектов (и протяженных, и точечных) измеряются в шкале “звездных величин”. Термин “звездная величина” - дань иррадиации, т.е. чем ярче наблюдаемый (точечный) объект, тем больше по размерам он кажется наблюдателю. Строго говоря, “иррадиация” - выход видимых размеров наблюдаемого светила за пределы его действительного (углового) размера.

Видимая звездная величина m - численное выражение зрительного ощущения при наблюдении излучающих астрономических объектов. Тогда в соответствии с законом Вебера-Фехнера (1):

Dm ~ dE/E, m ~ lgE. (3)

Практика астрономических наблюдений показала, что связь между m и lgE линейная, т.е.

m = a + b × lgE. (4)

Глаз - относительный приемник излучения, т.е. он способен оценивать фотометрические характеристики источника лишь в сравнении с другим источником излучения. Тогда при наблюдении двух звезд имеем:

m 1 = a + b × lgE 1 ,

m 2 = a + b × lgE 2 ,

или

M 1 - m 2 = b × (lgE 1 - lgE 2) = b × lg(E 1 /E 2). (5)

В XIX в. после исследования возможных значений коэффициента “b” Погсон предложил считать b = -2,512. Выражение (5) можно переписать в виде:

m 1 - m 2 = - 2,512 × lg(E 1 /E 2), (6)

или

lg(E 1 /E 2) = 0,4 × (m 2 - m 1). (7)

Формула (7) - формула Погсона.

Примем за единицу освещенности E освещенность от звезды, видимая звездная величина которой m = 0 m . Тогда из (6) получим связь между E и m:

m = - 2,512 × lgE. (8)

Видимая звездная величина m есть десятичный логарифм освещенности E, создаваемой светилом в точке наблюдения на нормальной к направлению излучения плоскости, умноженный на -2,512.

Если E = 1, то из (4): a = m, т.е. a является видимой звездной величиной единицы освещенности.

Так, если светило, наблюдаемое , создает на приемнике излучения освещенность E = , то a = -14 m 18 (без учета атмосферы) или a = -13 m 89 (с учетом атмосферы, т.е. “заатмосферное” значение единицы освещенности).

Шкала видимых звездных величин калибрована так , что , если блеск двух звезд (освещенности , создаваемые этими ми на приемнике излучения) различаются в 2 . 512 раза , то их видимые звездные величины различаются на единицу , причем меньшее значение m имеет более яркая . Видимые звездные величины m могут быть отрицательными и положительными, числами целыми или дробными. Самые яркие объекты неба имеют отрицательную видимую звездную величину : например , для Солнца m ⊙ = -26 m ,5 . Самые слабые объекты , которые можно наблюдать с помощью крупнейших телескопов , оборудованных чувствительнейшими приемниками излучения , имеют m =+25 m ÷ +30 m . Из соотношения Погсона следует , что видимая яркость Солнца приблизительно в 10 22 раз превышает яркость звезд, доступных на пределе крупнейшим телескопам.

Шкала видимых звездных величин введена Гиппархом ( II в. до н.э.). Видимая звездная величина m никак не связана ни с видимым , ни с действительным размером (диаметром) звезды. Более того , сравнивая видимые величины двух звезд , мы ничего не можем сказать о различиях в действительной этих звезд . Звезды отличаются друг от друга по диаметру и , следовательно , по площади излучающей поверхности , по температуре поверхности , наконец , могут находиться на разных расстояниях от наблюдателя . Холодный карлик с ничтожной мощностью излучения , но находящийся близко от Солнца , может иметь такую же видимую яркость , как и горячий гигант , удаленный от нас на огромное расстояние . Отсюда следует , что знание расстояний до звезд и меет принципиальное значение для оценки действительных физических параметров звезд и , следовательно , для понимания физических процессов , происходящих в мире звезд .


Звездная величина

Безразмерная физическая величина, характеризующая , создаваемую небесным объектом вблизи наблюдателя. Субъективно ее значение воспринимается как (у ) или (у ). При этом блеск одного источника указывают путем его сравнения с блеском другого, принятого за эталон. Такими эталонами обычно служат специально подобранные непеременные звезды. Звездную величину сначала ввели как указатель видимого блеска оптических звезд, но позже распространили и на другие диапазоны излучения: , . Шкала звездных величин логарифмическая, как и шкала децибеллов. В шкале звездных величин разность на 5 единиц соответствует 100-кратному различию в потоках света от измеряемого и эталонного источников. Таким образом, разность на 1 звездную величину соответствует отношению потоков света в 100 1/5 = 2.512 раза. Обозначают звездную величину латинской буквой "m" (от лат. magnitudo, величина) в виде верхнего курсивного индекса справа от числа. Направление шкалы звездных величин обратное, т.е. чем больше значение, тем слабее блеск объекта. Например, звезда 2-й звездной величины (2 m ) в 2.512 раза ярче звезды 3-й величины (3 m ) и в 2.512 x 2.512 = 6.310 раза ярче звезды 4-й величины (4 m ).

Видимая звездная величина (m ; часто ее называют просто "звездная величина") указывает поток излучения вблизи наблюдателя, т.е. наблюдаемую яркость небесного источника, которая зависит не только от реальной мощности излучения объекта, но и от расстояния до него. Шкала видимых величин ведет начало от звездного каталога Гиппарха (до 161 ок. 126 до н.э.), в котором все видимые глазом звезды впервые были разбиты на 6 классов по яркости. У звезд Ковша Б.Медведицы блеск около 2 m , у Веги около 0 m . У особо ярких светил значение звездной величины отрицательно: у Сириуса около -1.5 m (т.е. поток света от него в 4 раза больше, чем от Веги), а блеск Венеры в некоторые моменты почти достигает -5 m (т.е. поток света почти в 100 раз больше, чем от Веги). Подчеркнем, что видимая звездная величина может быть измерена как невооруженным глазом, так и с помощью телескопа; как в визуальном диапазоне спектра, так и в других (фотографическом, УФ-, ИК-). В данном случае "видимая" (англ. apparent) означает "наблюдаемая", "кажущаяся" и не имеет отношения конкретно к человеческому глазу (см.: ).

Абсолютная звездная величина (М) указывает, какую видимую звездную величину имело бы светило в том случае, если бы расстояние до него составляло 10 и отсутствовало бы . Таким отразом, абсолютная звездная величина, в отличие от видимой, позволяет сравнивать истинные светимости небесных объектов (в заданном диапазоне спектра).

Что касается спектральных диапазонов, то существует множество систем звездных величин, различающихся выбором конкретного диапазона измерения. При наблюдении глазом (невооруженным или через телескоп) измеряется визуальная звездная величина (m v ). По изображению звезды на обычной фотопластинке, полученному без дополнительных светофильтров, измеряется фотографическая звездная величина (m P). Поскольку фотоэмульсия чувствительна к синим лучам и нечувствительна к красным, на фотопластинке более яркими (чем это кажется глазу) получаются голубые звезды. Однако и с помощью фотопластинки, используя ортохроматическую и желтый , получают так называемую фотовизуальную шкалу звездных величин (m Pv ), которая практически совпадает с визуальной. Сопоставляя яркости источника, измеренные в различных диапазонах спектра, можно узнать его цвет, оценить температуру поверхности (если это звезда) или (если планета), определить степень межзвездного поглощения света и другие важные характеристики. Поэтому разработаны стандартные , в основном определяемых подбором светофильтров. Наиболее популярна трехцветная : ультрафиолетовый (Ultraviolet), синий (Blue) и желтый (Visual). При этом желтый диапазон очень близок к фотовизуальному (B m Pv ), а синий - к фотографическому (B m P).

(из Википедии)

Звёздная величина - числовая характеристика объекта на небе, чаще всего звезды, показывающая, сколько света приходит от него в точку, где находится наблюдатель.

Видимая (визуальная)

Современное понятие видимой звёздной величины сделано таким, чтобы оно соответствовало величинам, приписанным звёздам древнегреческим астрономом Гиппархом во II веке до н. э. Гиппарх разделил все звёзды на шесть величин. Самые яркие он назвал звёздами первой величины, самые тусклые — звёздами шестой величины. Промежуточные величины он распределил равномерно между оставшимися звёздами.

Видимая звёздная величина зависит не только от того, сколько света излучает объект, но и от того, на каком расстоянии от наблюдателя он находится. Видимая звёздная величина считается единицей измерения блеска звезды, причём чем блеск больше, тем величина меньше, и наоборот.

В 1856 году Н. Погсон предложил формализацию шкалы звёздных величин. Видимая звёздная величина определяется по формуле:

Где I — световой поток от объекта, C — постоянная.

Поскольку данная шкала относительная, то её нуль-пункт (0 m ) определяют как яркость такой звезды, у которой световой поток равен 10³ квантов /(см²·с·Å) в зелёном свете (шкала UBV) или 10 6 квантов /(см²·с·Å) во всём видимом диапазоне света. Звезда 0 m за пределами земной атмосферы создаёт освещённость в 2,54·10 −6 люкс.

Шкала звёздных величин является логарифмической, поскольку изменение яркости в одинаковое число раз воспринимается как одинаковое (закон Вебера — Фехнера). Кроме того, поскольку Гиппарх решил, что величина тем меньше , чем звезда ярче , то в формуле присутствует знак минус.

Следующие два свойства помогают пользоваться видимыми звёздными величинами на практике:

  1. Увеличению светового потока в 100 раз соответствует уменьшение видимой звёздной величины ровно на 5 единиц.
  2. Уменьшение звёздной величины на одну единицу означает увеличение светового потока в 10 1/2,5 =2,512 раза.

В наши дни видимая звёздная величина используется не только для звёзд, но и для других объектов, например, для Луны и Солнца и планет. Поскольку они могут быть ярче самой яркой звезды, то у них может быть отрицательная видимая звёздная величина.

Видимая звёздная величина зависит от спектральной чувствительности приёмника излучения (глаза, фотоэлектрического детектора, фотопластинки и т. п.)

  • Визуальная звёздная величина (V или m v ) определяется спектром чувствительности человеческого глаза (видимый свет), имеющего максимум чувствительности при длине волны 555 нм. или фотографически с оранжевым фильтром.
  • Фотографическая или «синяя» звёздная величина (B или m p ) определяется фотометрированием изображения звезды на фотопластинке, чувствительной к синим и ультрафиолетовым лучам, или при помощи сурьмяно-цезиевого фотоумножителя с синим фильтром.
  • Ультрафиолетовая звёздная величина (U ) имеет максимум в ультрафиолете при длине волны около 350 нм.

Разности звёздных величин одного объекта в разных диапазонах U−B и B−V являются интегральными показателями цвета объекта, чем они больше, тем более красным является объект.

  • Болометрическая звёздная величина соответствует полной мощности излучения звезды, т. е. мощности, просуммированной по всему спектру излучения. Для её измерения применяется специальное устройство — болометр.

абсолютная

Абсолютная звёздная величина (M ) определяется как видимая звёздная величина объекта, если бы он был расположен на расстоянии 10 парсек от наблюдателя. Абсолютная болометрическая звёздная величина Солнца +4,7. Если известна видимая звёздная величина и расстояние до объекта, можно вычислить абсолютную звёздную величину по формуле:

где d 0 = 10 пк ≈ 32,616 световых лет.

Соответственно, если известны видимая и абсолютная звёздные величины, можно вычислить расстояние по формуле

Абсолютная звёздная величина связана со светимостью следующим соотношением: где и — светимость и абсолютная звёздная величина Солнца.

Звёздные величины некоторых объектов

Объект m
Солнце −26,7
Луна в полнолуние −12,7
Вспышка Иридиума (максимум) −9,5
Сверхновая 1054 года (максимум) −6,0
Венера (максимум) −4,4
Земля (глядя с Солнца) −3,84
Марс (максимум) −3,0
Юпитер (максимум) −2,8
Международная космическая станция (максимум) −2
Меркурий (максимум) −1,9
Галактика Андромеды +3,4
Проксима Центавра +11,1
Самый яркий квазар +12,6
Самые слабые звёзды, наблюдаемые невооружённым глазом От +6 до +7
Самый слабый объект, заснятый в 8-метровый наземный телескоп +27
Самый слабый объект, заснятый в космический телескоп Хаббла +30
Объект Созвездие m
Сириус Большой пёс −1,47
Канопус Киль −0,72
α Центавра Центавр −0,27
Арктур Волопас −0,04
Вега Лира 0,03
Капелла Возничий +0,08
Ригель Орион +0,12
Процион Малый пёс +0,38
Ахернар Эридан +0,46
Бетельгейзе Орион +0,50
Альтаир Орёл +0,75
Альдебаран Телец +0,85
Антарес Скорпион +1,09
Поллукс Близнецы +1,15
Фомальгаут Южная рыба +1,16
Денеб Лебедь +1,25
Регул Лев +1,35

Солнце с разных расстояний

Статьи по теме